综合以上典型例子可以看出,工程应用对CFD较高的要求主要体现在湍流/转挨模拟、高精度格式、动网格技术以及计算资源需求方面,在一些关键问题上,CFD仍然力不从心,而这些关键问题正是CFD技术在航空工程应用中的主导要素。
1 分离流动中的湍流模型
在航空工程领域,线性的涡茹性湍流模型几乎一统天下,典型代表是Sparlart-Allmaras一方程湍流模型via]以及Menter SST两方程湍流模型16of大量的数值计算表明,对于中小攻角状态,这两种湍流模型计算精度均基本满足工程需求。这两种涡粘性模型以高鲁棒性、以及良好的处理附着、小分离流动的能力,深受CFD工程师的喜爱,广泛应用于低速、亚声速、跨声速、超声速以及高超声速流场计算中。当流场中出现明显流动分离即流动分离现象时,传统的RANS方法将高估涡粘性,无法分辨流场中不同尺度的涡结构,进而无法准确预测分离流动下飞行器的气动特性。在上个世纪90年代,尽管对线性涡粘性模型提出了修正改进以及提出了非线性涡粘性湍流模型,但实际上是对boussineq涡粘性假设的进一步延拓,仍然无法改变雷诺应力及平均速度梯度的运动学依赖关系,任何影响只能通过模型系数的确定过程和选取的尺度方程来反映,流动分离现象依然无法准确模拟。
对准确模拟分离流动的开创性研究工作,可以追溯到20世纪60年代。Smagorinsky将大涡模拟方法,引入气象学研究,LES正式登上CFD历史舞台。进一步研究中,研究者也提出了很多各有特点的亚格子模式,按照类型可以分为唯象论模式和结构型模式。然而,大涡模拟存在近壁区网格规模要求庞大以及数值稳定性两个瓶颈,因此在工程应用中难以高效利用。1997年Sparlart基于SA一方程湍流模型提出了DES数值方法,是在实际工程中准确预测非定常湍流的开创性工作,一定程度上应用于飞行器分离流动数值模拟当中,取得了令人鼓舞的成果。DES方法本身存在强烈的网格依赖性,不适当的网格分布会提前启动亚格子模型,从而出现边界层应力损耗,导致网格诱导分离现象,随之出现了DDES ,MDDES , IDDES分离流模拟方法,力图减小网格依赖性,后者改进使得DES类方法在工程应用中更具普适性,但在航空航天方面高Re数数值计算中,以及对真实构型上的常规应用,这种混合方法目前来说成本依然过高。
混合RANS/LES方法是计算分离流动的另一种有效手段,该方法要能在工程中有效应用,需要在边界层内实现RANS计算与LES计算的无缝、自动转换,2005年Menter在湍流模型中引入尺度自适应模拟(scale adaptive simulation, SAS)的概念hsl,利用Lvk在非稳态区域根据当地的湍流涡动态地调整RANS的长度尺度,从而自边界层的惯性子区出发,直到远离壁面的非稳态区域,克服了RANS/LES交界面问题,对分离流的数值模拟精度效果较好,很大程度上减小了网格依赖性。混合LES/RANS方法存在对入口参数的脉动敏感的问题。添加白噪声的方法通常只能满足速度脉动的二阶统计特性(例如雷诺应力),所添加的扰动和NS方程不相容,需要很长的距离才能发展出充分的湍流拟序结构,且摩阻计算精度较低,“回收/调节”添加的脉动量和NS方程的相容性较好,可以在较短的距离上激励并维持湍流大尺度结构。采用“回收/调节”方法能够激励起湍流边界层的大尺度结构,使得湍流边界层的脉动特性合理化,并且具备真实的湍动能,流场的非定常特性,如图2930所示。
总的来看,目前对分离流的研究主要集中于高精度数值计算方法和先进湍流模拟技术的研究。从目前高性能计算水平以及工程需求来看,基于混合RANS/LES, LES思想的湍流模拟方法已经在实际应用中开始发挥重要作用,不仅体现在飞行器后体分离、方腔流、过失速流场等强非线性流动气动特性模拟中,且与声类比等方法结合成为气动噪声数值模拟的重要手段,图犯给出了高阶紧致格式结合混合DES方法应用于串列柱翼构型和喷嘴射流等典型噪声问题的求解。
2 边界层转振数值模拟技术
边界层转挨预测在现代“绿色”航空飞行器的气动设计中扮演着重要的角色,转挨现象的准确预测对精确模拟阻力及层流飞行器设计成功设计来说至关重要。不仅如此,边界层转挨数值模拟技术在高超声速飞行器进气道设计、热防护设计中的作用也举足轻重,高超声速边界层转挨是其中非常重要但又难度很大且当前最为关注的研究课题。
对于转挨机理与预测方法,众多研究者提出了不同的看法,如Craik提出了共振三波理论,Herbert提出了二次失稳理论,Kachanov提出了一般共振理论等。从波音公司退休的著名飞机气动专家Cebeci在回顾了五十年来的转挨预测方法后认为:最实用的转挨预测方法是基于线性稳定性分析或抛物化稳定性方程的半经验eN方法,其前提是有足够多的实验或飞行试验数据作为依据。层流稳定性分析方法的发展对边界层转挨研究起到关键作用,上个世纪90年代Herbert和B ertolitti提出了基于抛物化稳定性方程(Parabolized Stability Equations,缩写为PSE)的方法,该方法沿空间推进求解抛物化扰动方程,适用于对流不稳定类型的扰动,如TS波、Mack模态、横流涡等,被广泛应用于非平行流、非局部、非线性效应对流动稳定性的影响研究,图3334为采用线性稳定性理论预测后掠机翼层流边界层流动最不稳定的定常横流扰动波,图33给出了机翼前缘位置添加定常横流扰动,横流扰动向下游发展形成横流涡的过程。图34表示饱和的定常横流涡。大量的稳定性分析方法研究成果对转挨预测技术的发展起到推动作用,例如稳定性分析给eN方法提供了振幅增长曲线,结合工程给定的N指数,提供了一种通过数值分析预测边界层转挨的方法,这种方式在CFD中已经得到应用。
稳定性分析、转挨经验关系式、低雷诺数湍流模型、大涡模拟(LES)和直接数值模拟 C DNS)等转挨数值模拟技术是目前预测转挨的主要手段,但上述方法由于计算量庞大、非当地化操作等种种因素限制,很难应用于实际工程应用中,仅仅限于简单外形以及低雷诺数数值模拟,很难应用于实际工程应用中。然而上述方法能够为转挨机理提供了大量的先验知识以及数据支持,为工程应用提供了良好的理论基础。
工程转挨模型的提出是实际工程应用中预测转挨的标志性进展,研究最有代表性的是Langtry和Menter提出的一种基于SST湍流模型中的完全基于流场当地变量的转挨模型,以及James coder基于线性稳定性理论建立的低湍流度转挨模型。模型利用经验关联函数以及转挨动量厚度雷诺数实现对间歇函数的控制,进一步控制湍流模型的生成项,实现边界层转挨数值模拟,不反映流场的相关物理机制,但提供了一个能把针对不同特定问题的转挨经验关系式藕合到主流CFD程序的框架,是工程转挨模型建模领域的一大突破;另一方面,基于线性稳定性理论的eN方法也是工程中预测转挨的重要手段,它着重于从物理上尽量准确地描述层流边界层中小扰动行波即T-S波的振幅沿边界层流向的线性放大阶段,并根据经验选定判定转挨发生的临界N值。该方法的一大缺点就是其无法融入进现代CFD程序中,因为eN方法求解的是关于小扰动波的振幅的线性稳定性方程,它要求预先获得平均流边界层的速度分布,且在并行计算中,边界层被拆分为几个部分,很难实现积分,为解决此问题James coder基于eN方法的思想建立了低湍流度增长因子输运方程,使得这种方法更好地与现代CFD技术结合。
以Langtry与James coder提出的工程转挨模型为代表,为工程应用中边界层转挨预测提供了一条有效途径一当地化转挨模型,由此CFD研究人员可以充分利用稳定性理论、风洞试验甚至DNS数据进行转挨判据当地化建模标定,可以将自然转挨、bypass转挨、分离泡转挨、横流转挨、前缘附着线转挨等判据融入转挨模型框架,利用输运方程对转挨判据以及间歇函数进行整个空间流场输运、计算,控制湍流的生成与耗散,实现边界层转挨的准确预测。以MD30P30N多段翼型、NLR7301多段翼型以及DFVLR风洞试验6:1椭球模型1861为例,基于自行研发的大型并行CFD代码PMB3D,分别进行流向、横流转挨数值模拟,如图3544所示,与风洞试验数据较为吻合。可以预见,转挨模型在工程转挨预测中具备极大的应用潜力。
3 高精度格式
除了湍流模拟方法,空间离散精度是决定气动特性计算精度的另外一个关键技术。当前,基于二阶精度的RANS方程的计算方法和数值模拟软件广泛应用于现代民用飞机的气动设计并取得了巨大的成功,但在阻力系数、最大升力系数等关键气动特性的数值模拟精度方面,距离工程应用实际尚有很大的差距。因此,高阶精度算法研究成为国际CFD研究的热点和前沿,欧盟、美国及日本先后启动了各自的高精度方法及新一代CFD软件研究项目。在2006-2009年,由欧盟资助、德国宇航院牵头组织了ADIGMA项目 (Adaptive Higher-order Variational Methods forAerodynamic Application in Industry)一“面向工程应用的自适应高精度方法”,参与单位包括了德、法、英、意、荷等10个欧盟国家的22家空气动力研究机构,该项目的根本目的是面向CFD在空气动力学方面的应用,开展高阶精度方法的可信度和网格无关性研究,发展和应用自适应的高阶精度方法,促进高阶精度方法在飞行器气动设计中的应用水平。目前,高阶精度方法的研究主要集中于方法的构造,如:间断有限元方法、间断有限元/有限体积方法、残差分布格式(Residual Distribution Scheme),线性/非线性紧致格式等;在应用方面主要侧重于与LES/DES方法相结合开展简单构型的复杂流动机理研究,如气动噪声机理、大迎角失速机理等等。
对于实际工程而言,高阶精度方法在复杂外形的应用方面才刚刚起步。对于结构化网格,实现复杂外形流动的高精度数值模拟存在三大瓶颈技术:几何守恒问题、边界信息高精度传输问题、网格奇点问题。近年来邓小刚研究团队提出了守恒网格导数计算方法(CMM)和对称守恒网格导数计算方法(SCMM,解决了复杂外形流动高精度数值模拟的几何守恒问题;发展了高阶特征对接方法(CBIC)和跨边界高阶插值方法,解决了复杂外形流动高精度数值模拟的边界信息高精度传输问题;发展了有限差分方法非等距求解策略,解决了复杂外形流动高精度数值模拟的网格奇点问题。上述三项关键技术的解决为采用高阶精度格式模拟复杂外形提供了技术支撑,通过在运输机低速/巡航标模、三角翼大攻角标模、高超声速典型标模的数值模拟,如图4548所示,确认了五阶精度的加权紧致非线性格式(WCNS)模拟在大迎角气动特性模拟、阻力系数、热流系数模拟方面相较于二阶精度算法的优势。上述研究成果已经初步成功应用于大型客机等复杂型号问题的关键气动特性攻关,高阶精度格式在复杂外形的应用方面取得了重要进展。
4 运动网格技术
网格技术是进行CFD模拟的前提,CFD实际应用中网格生成占去整个工作量的70%,发展高效的网格生成技术是CFD研究领域的一个重要方向。网格生成技术大体上分为结构网格技术与非结构网格技术,两者各有特点,均广泛应用于实际工程中。多块网格、非结构的推广使得CFD数值技术大规模地应用于解决实际问题中,提高了CFD解决复杂外形气动问题的能力。对于更为复杂的工程问题,上述网格技术远远不能满足需求,因此,CFD研究学者与工程师们进一步提出了结构/非结构重叠网格、笛卡尔网格、混合网格技术,并针对多体运动、气动弹性等特定问题,进一步发展了刚性动网格技术、柔性动网格技术以及网格重构技术。
实际上,动网格技术最大的贡献,在于拓展CFD数值技术的应用范围,不仅体现在CFD计算本身上,更大程度上体现在气动弹性、气动设计、飞行仿真、武器投放以及多学科、多物理场藕合方面。针对不同的问题研究人员发展了不同的柔性动网格方法,对于结构网格包括径向基函数法、无限插值方法、有限元方法、弹性体方法以及四元数方法等,非结构网格最常用的动网格技术包含径向基函数、弹簧法、有限元方法、四元数方法以及弹性体方法,这些方法已经应用于许多领域,新型、改进型动网格方法也在不断发展中。
动网格本身的需要解决的问题包括两个问题,一方面是鲁棒性问题,这个问题中包含了对变形承载能力的要求以及对网格质量的要求,关系到动网格应用是否能够成功,计算是否准确;另一方面是计算效率问题,在气动设计以及非定常运动计算中,需要反复调用动网格技术,这一要求显得尤为重要。对于非定常计算来讲,柔性动网格技术面临的直接问题是几何守恒律,离散精度需与流场推进时间精度保持一致;刚性动网格技术往往与重叠网格技术配合使用,此时洞点识别效率以及插值精度成为的数值模拟的关键技术;而柔性网格与重叠网格技术的配合使用研究较少,这种组合具备较大的应用潜力,可以很大程度上简化问题的复杂性,例如低速复杂构型气动弹性问题研究、弹性飞机六自由度仿真/阵风减缓研究、弹性飞机多体分离问题研究等。
5 高性能计算技术
毫无疑问,CFD数值模拟技术的发展很大程度上依赖于计算能力的发展,尤其对于复杂工程问题而言,同时保证计算精度与计算效率的一个关键就在于高性能计算能力。尽管高性能计算设备取得了很大的研发进展,但CFD对计算能力的需求几乎是无止境的,例如用CFD方法对超燃发动机中的物理过程进行完整模拟,需要比目前超级计算机快100到1000倍的系统(达到E级);NASA Langley中心分析,超声速运输机研制的CFD计算,需要计算性能达千万亿次浮点运算/秒的计算机;研制可重复使用天地飞行器,其CFD计算需求是上述需求的4倍,而基于CFD的多学科设计优化的计算量是纯CFD计算量的4个数量级。目前高性能计算机系统发展的下一个台阶是E级(1018)超级计算机系统。E级高性能计算机系统的研究就把CFD计算作为其发展的一个重要需求,目前的E级高性能计算机在国际上得到高度重视,美国在“Strategy forAmerican Innovation”计划中,将E级计算列为21世纪美国最主要的技术挑战,受到目前的技术条件制约,在现有能耗使用效率、计算效率的条件下,实现面向CFD的实用化和高效化的E级乃至更大规模高性能计算系统将面临功耗、可靠性、编程与执行环境、应用效率与适用性等几大技术挑战。我国航空工业型号设计对CFD计算的需求基本处于P级计算性能的超级计算机水平,其中气动弹性计算需求比气动力计算大2个数量级以上,多学科设计优化计算需求比气动计算大4个数量级以上,即需要E级系统。另一方面计算架构的更新换代,使得程序员很难完全脱离复杂的底层结构,硬件设备异质化的趋势必将提高HPC环境下CFD编程的复杂程度,这是CFD研发人员面临的新的挑战。
高性能计算设备在航空航天研究机构中已经得到很大程度上的普及与应用,美国航空航天局NASA、德国宇航院DLR、法宇航NLR、日本宇航中心JAXA、瑞典国防研究院FOI等均配备了高性能计算设备,国内气动中心、中科院等研究机构也配备了高性能并行集群,其中气动中心计算设备的运算速度达到了1560万亿次/秒。从并行效率以及高精度、高可信度计算方法在工程领域应用的程度来看,高性能大规模计算依然是薄弱环节。